

2.1

8.

- a) No, $\{2\}$ is not an element of the set.
- b) No, $\{2\}$ is not an element of the set.
- c) Yes, $\{2\}$ is an element of the set.
- d) Yes, $\{2\}$ is an element of the set.
- e) Yes, $\{2\}$ is an element of the set.
- b) No, $\{2\}$ is not an element of the set.

20. a) 0

- b) 1
- c) 2
- d) 3

22. Yes, different sets have different power sets and thus the contrapositive must be true i.e. the same sets have identical power sets.

- 42. a) it is true that there exists some real number, x , such that $x^3 = -1$
- b) It is true that there exists some integer, x , such that $x+1 > x$
- c) It is true that for all x in the set of integers, $x-1$ is also in the set of integers
- d) It is true that for all x in the set of integers, x^2 is also in the set of integers

2.2

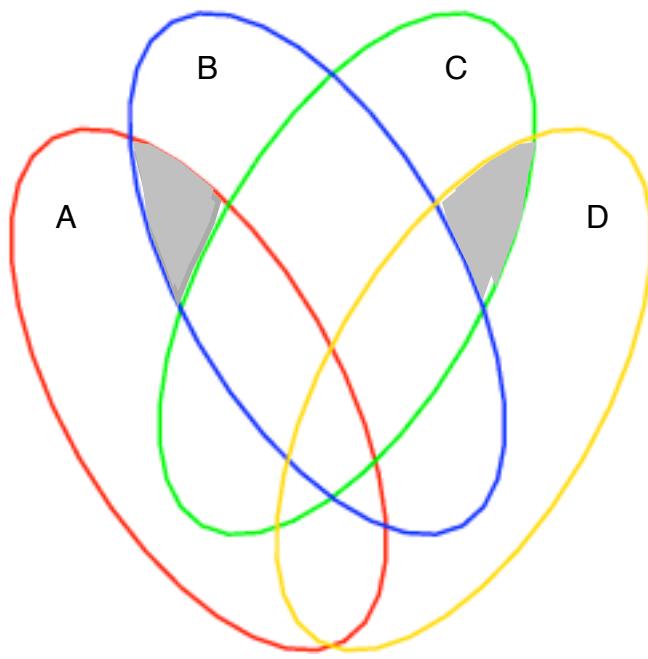
12. $A \cup (A \cap B) = A$, we can see this as A intersect B will yield whatever values are in both A and B , which means regardless of what B is (even if it is the universal set or empty set), the result of A intersect B will not contain any values not already in A . So, the result of this intersection unionized with A , will not contain any values not already in A , and it will not miss any elements in A because we are taking the union with A , which means we will only have elements of A , nothing more or less.

14. $A=\{1,3,5,6,7,8,9\}$, $B=\{2,3,6,9,10\}$

18. c) We can see this is true because there exists no set for B , such that $A - B$ is $\subseteq A$, i.e. there exists no set such that subtracting said set from another set results in new values being added to the other set (there is no way to add elements to a set through subtraction). Therefore, $A-B$ must result in a subset of A (note that this stands true even when B is the empty set as a set is a subset of itself), and following this operation we are subtracting the same set from both sides, which means the statement stands true.

24. Where $\neg C$ denotes the complement of C

$$(A \cap \neg B) \cap \neg C = (A \cap \neg C) \cap (\neg B \cap \neg C)$$


$$(A \cap \neg B) \cap \neg C = (A \cap \neg C) \cap (\neg B \cup C)$$

$$(A \cap \neg B) \cap \neg C = (A \cap \neg C \cap \neg B) \cup (A \cap \neg C \cap C)$$

$$(A \cap \neg B) \cap \neg C = (A \cap \neg C \cap \neg B) \cup (A \cap \emptyset)$$

$$A \cap \neg B \cap \neg C = A \cap \neg C \cap \neg B \text{ which are equivalent}$$

28. a)

30. a) No.

b) No.

c) Yes.

50 c) Union is all positive real numbers and Intersection is {0}